Package: RaJIVE 1.0

RaJIVE: Robust Angle Based Joint and Individual Variation Explained

A robust alternative to the aJIVE (angle based Joint and Individual Variation Explained) method (Feng et al 2018: <doi:10.1016/j.jmva.2018.03.008>) for the estimation of joint and individual components in the presence of outliers in multi-source data. It decomposes the multi-source data into joint, individual and residual (noise) contributions. The decomposition is robust to outliers and noise in the data. The method is illustrated in Ponzi et al (2021) <arxiv:2101.09110>.

Authors:Erica Ponzi [aut, cre], Abhik Ghosh [aut]

RaJIVE_1.0.tar.gz
RaJIVE_1.0.zip(r-4.5)RaJIVE_1.0.zip(r-4.4)RaJIVE_1.0.zip(r-4.3)
RaJIVE_1.0.tgz(r-4.4-any)RaJIVE_1.0.tgz(r-4.3-any)
RaJIVE_1.0.tar.gz(r-4.5-noble)RaJIVE_1.0.tar.gz(r-4.4-noble)
RaJIVE_1.0.tgz(r-4.4-emscripten)RaJIVE_1.0.tgz(r-4.3-emscripten)
RaJIVE.pdf |RaJIVE.html
RaJIVE/json (API)

# Install 'RaJIVE' in R:
install.packages('RaJIVE', repos = c('https://ericaponzi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ericaponzi/rajive/issues

On CRAN:

2.70 score 1 scripts 132 downloads 8 exports 32 dependencies

Last updated 4 years agofrom:7d494d1102. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:ajive.data.simdecomposition_heatmaps_robustHget_block_loadingsget_block_scoresget_individual_rankget_joint_rankRajiveshowVarExplained_robust

Dependencies:clicodetoolscolorspacedoParallelfansifarverforeachggplot2gluegtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr